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ABSTRACT

Soil moisture controls the partitioning of moisture and energy fluxes at the land surface and is a key variable
in weather and climate prediction. The performance of the ensemble Kalman filter (EnKF) for soil moisture
estimation is assessed by assimilating L-band (1.4 GHz) microwave radiobrightness observations into a land
surface model. An optimal smoother (a dynamic variational method) is used as a benchmark for evaluating the
filter’s performance. In a series of synthetic experiments the effect of ensemble size and non-Gaussian forecast
errors on the estimation accuracy of the EnKF is investigated. With a state vector dimension of 4608 and a
relatively small ensemble size of 30 (or 100; or 500), the actual errors in surface soil moisture at the final update
time are reduced by 55% (or 70%; or 80%) from the value obtained without assimilation (as compared to 84%
for the optimal smoother). For robust error variance estimates, an ensemble of at least 500 members is needed.
The dynamic evolution of the estimation error variances is dominated by wetting and drying events with high
variances during drydown and low variances when the soil is either very wet or very dry. Furthermore, the
ensemble distribution of soil moisture is typically symmetric except under very dry or wet conditions when the
effects of the nonlinearities in the model become significant. As a result, the actual errors are consistently larger
than ensemble-derived forecast and analysis error variances. This suggests that the update is suboptimal. However,
the degree of suboptimality is relatively small and results presented here indicate that the EnKF is a flexible
and robust data assimilation option that gives satisfactory estimates even for moderate ensemble sizes.

1. Introduction
Near-surface soil moisture is a key variable in the at-

mospheric and hydrologic models that are used to predict
weather and climate. Since soil moisture controls the par-
titioning of moisture and energy fluxes at the land surface,
it has an important influence on the hydrologic cycle over
timescales ranging from hourly to interannual. Land sur-
face fluxes in turn affect the evolution of vertical buoy-
ancy in the atmospheric column and also affect the bar-
oclinicity that develops in the horizontal plane (Pan et
al. 1995; Paegle et al. 1996). The formation and growth
of clouds as well as the evolution of precipitating weather
systems over land are affected by surface fluxes and sur-
face soil moisture (Shaw et al. 1997). In fact, the time-
scale of soil moisture anomalies is at least on the order
of several days, which is the forecast-lead horizon of
operational weather forecasts.
At seasonal to interannual timescales, predictability

of climatic variables such as precipitation is dependent
on the land surface boundary conditions of the climate
system. Koster et al. (2000) show that over the United
States and other large continental regions soil moisture
rivals sea surface temperature in explaining the variance
in seasonal precipitation anomalies. Increasingly soil
moisture and the memory associated with it are rec-
ognized to have important roles in the feedback mech-
anisms that intensify and prolong climate anomalies.
Despite the importance of soil moisture in weather

and climate prediction there are currently no operational
networks of in situ sensors that provide data suitable
for these applications. Since such networks are logis-
tically infeasible and prohibitively expensive, the focus

has turned to remote sensing techniques that provide
additional information about the land surface at large
scales. In particular the L-band (1.4 GHz) microwave
brightness temperature of the land surface is correlated
with surface soil moisture because of the sharp contrast
between the dielectric constants of water and soil min-
erals (Njoku and Entekhabi 1995).
Interpretation of remotely sensed passive and active

microwave measurements is complicated by the effects
of canopy microwave optical thickness, surface micro-
roughness, and physical temperature. Remote sensing
measurements are only one of many data sources that
provide valuable information about soil moisture. Pre-
cipitation, soil texture, topography, land use, and a va-
riety of meteorological variables influence the spatial
distribution and temporal evolution of soil moisture. We
can gain additional information from a coupled model
of the soil–vegetation–atmosphere system that relates
the measured variables to one another and to soil mois-
ture. Yet uncertainties in the forcing data, the hetero-
geneity of the land surface at various scales, and the
nonlinear nature of land–atmosphere interactions limit
our ability to accurately model and predict the state of
the land surface and the associated fluxes.
Modern data assimilation theory provides methods

for optimally merging the information from uncertain
remote sensing observations and uncertain land model
predictions (Errico 1999; Errico et al. 2000). Among
the prior work on large-scale soil moisture assimilation
are studies by Bouttier et al. (1993) and Rhodin et al.
(1999) who assimilate low-level air temperature and rel-
ative humidity to estimate soil moisture. This approach
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aims at improving numerical weather prediction and
treats soil moisture as a tuning parameter. Houser et al.
(1998) focus on the four-dimensional assimilation of in
situ observations and soil moisture retrievals. The weak-
constraint variational method of Reichle et al. (2001b)
yields near-optimal estimates of the land surface states
from direct assimilation of microwave observations.
Reichle et al. (2001a) prove the concept of optimal
downscaling for the case where soil moisture estimates
are required at scales smaller than the scale of the mi-
crowave observations. They also show that soil moisture
can be satisfactorily estimated even if quantitative pre-
cipitation estimates are not available.
In this paper we examine the feasibility of using the

ensemble Kalman filter (EnKF) for soil moisture data
assimilation. The EnKF is an attractive option for land
surface applications because (i) its sequential structure is
convenient for processing remotely sensed measurements
in real time, (ii) it provides information on the accuracy
of its estimates, (iii) it is relatively easy to implement
even if the land surface model and measurement equa-
tions include thresholds and other nonlinearities, and (iv)
it is able to account for a wide range of possible model
errors. On the other hand, the EnKF relies on a number
of assumptions and approximations that may compromise
its performance in certain situations.
The EnKF and variants have been successfully ap-

plied to meteorological and oceanographic problems of
moderate complexity in small- to medium-sized do-
mains (Evensen and van Leeuwen 1996; Houtekamer
and Mitchell 1998; Lermusiaux 1999; Madsen and Can-
izares 1999; Keppenne 2000). Hamill et al. (2000) pro-
vide an excellent discussion of the state of the art of
ensemble forecasting and assimilation methods in the
meteorological and oceanographic context. The models
of geophysical flow used in most of these studies are
chaotic in nature and typically have dominant modes
that can grow rapidly within a certain subspace. Most
such models also have an attractor and sample only a
small subdomain of their phase space (Anderson and
Anderson 1999). This greatly increases the potential to
successfully apply ensemble filtering methods. By con-
trast, typical land surface models are dissipative in na-
ture. Perturbations in the initial conditions tend to die
out after a certain time rather than amplify. Conse-
quently, the soil moisture ensemble filtering problem
has certain distinctive aspects that merit closer inves-
tigation.
This paper evaluates the performance and computa-

tional burden of the EnKF for a synthetic experiment.
As a benchmark for the EnKF we use a variational meth-
od that solves the optimal smoothing problem. We begin
in section 2 with a brief review of the EnKF. The bench-
mark variational method is discussed in the cited ref-
erences, including (Reichle et al. 2001b). In section 3
we briefly describe the land model and the setup of the
synthetic experiments we use to investigate design is-
sues. In section 4 we discuss the results of these ex-
periments and compare the EnKF with the variational
method. We conclude in section 5 with a summary of
major findings.

5. Summary and conclusions
In this paper, we discuss the application of the en-

semble Kalman filter to hydrologic data assimilation and
in particular to the estimation of soil moisture from L-
band microwave brightness temperature observations.
We also compare the performance of the EnKF to an
optimal smoother (weak-constraint variational algo-
rithm). Both methods are applied to the same problem
and use identical state and measurement equations, error
statistics, and synthetically generated measurements.We
conclude that with relatively few ensemble members the
EnKF yields reasonable soil moisture estimates. For a
state vector dimension of 4608 and a relatively small
ensemble size of 30 (or 100; or 500), the actual errors
in surface soil moisture at the final update time decrease
by 55% (or 70%; or 80%) from the value obtained with-
out assimilation (as compared to 84% for the optimal
smoother).
The EnKF significantly underestimates the forecast

error variances for 100 ensemble members. However,
the error variance estimates derived by the filter are
reasonably good when the ensemble size is increased
to 500 members. Our results indicate that the forecast
error variances vary strongly with time and space. This
implies that it is very important to account for dynamic
error covariance propagation. Assimilation schemes that
use static forecast error covariances (e.g., statistical in-
terpolation) are unlikely to produce the desired near-
optimal estimates.
More research is required to better understand the

EnKF and its variants. In particular, better understanding
is needed of the role of nonlinearities and related asym-
metries in the conditional forecast probability density
function. We have found that nonlinearities in the model
and measurement processes contribute to differences in
the filtering and smoothing estimates even at the final
update. In our application the state (soil moisture) is
bounded above and below and its distribution cannot
always be well approximated by a Gaussian pdf. For
very wet or dry conditions, in particular, the soil mois-
ture pdf exhibits considerable skewness. It is likely that
the variational smoother is superior to the EnKF when
dealing with nonlinear and non-Gaussian effects. How-
ever, it is important to recognize that the variational
approach is designed to estimate the mode of the con-
ditional forecast density while the EnKF is designed to
estimate the mean. So even if both approaches work as
intended their estimates at the end of the smoothing
interval can be expected to differ when the density is
asymmetric.
In a practical application of the EnKF, it will probably

be necessary to model the forecast covariance rather
than to compute it in an exact sense. In the EnKF, co-
variance modeling could include smoothing out the en-
semble-derived covariances before the update or apply-
ing the update to subregions of the computational do-
main. Ultimately, a hybrid filter that combines empirical
forecast error covariances with dynamic error propa-
gation via the EnKF (Hamill and Snyder 2000) may be
the best approach.
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